Publications

For a complete list of publications, please check my INSPIRE-HEP profile or Google Scholar profile.

[Publications Summary: 33 Refereed Journal Articles + 13 Conference Proceedings + 1 Physics Magazine Article + Academic Theses]

Refereed Journal Articles

33. Measurement of the Ar(e,e′p) and Ti(e,e′p) cross sections in Jefferson Lab Hall A
L. Gu et al. [Jefferson Lab Hall A Collaboration]
arXiv:2012.11466 [nucl-ex]

32. Cosmic Background Removal with Deep Neural Networks in SBND
R. Acciarri et al. [SBND Collaboration]
arXiv:2012.01301 [physics.data-an]

31. Flavor-dependent radiative corrections in coherent elastic neutrino-nucleus scattering
O. Tomalak, P. Machado, V. Pandey, R. Plestid 
arXiv:2011.05960 [hep-ph]

30. Modeling quasielastic interactions of monoenergetic kaon decay-at-rest neutrinos
A. Nikolakopoulos, V. Pandey, J. Spitz, N. Jachowicz
arXiv:2010.05794 [nucl-th]

29. Nuclear Structure Physics in Coherent Elastic Neutrino-Nucleus Scattering
N. Van Dessel, V. Pandey, H. Ray, N. Jachowicz
arXiv:2007.03658 [nucl-th]

28. Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector
P. Abratenko et al. [MicroBooNE Collaboration]
arXiv:2002.09375 [physics.ins-det]

27. Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND)
R. Acciarri et al. [SBND Collaboration]
JINST 15 no.06, P06033 (2020) arXiv:2002.08424 [physics.ins-det]

26. Probing few-body nuclear dynamics via ^3H and ^3He (e , e’p)pn cross-section measurements
R. Cruz-Torres et al. [Jefferson Lab Hall A Tritium Collaboration]
Phys. Rev. Lett. 124, 212501 (2020) | arXiv:2001.07230 [hep-ex]

25. Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector
P. Abratenko et al. [MicroBooNE Collaboration]
Phys. Rev. D 101, 052001 (2020) | arXiv:1911.10545 [hep-ex]

24. Reconstruction and Measurement of O(100) MeV Energy Electromagnetic Activity from π0→γγ Decays in the MicroBooNE LArTPC
C. Adams et al. [MicroBooNE Collaboration]
JINST 15 no.02, P02007 (2020) | arXiv:1910.02166 [hep-ex]

23. A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE
C. Adams et al. [MicroBooNE Collaboration]
JINST 15 no.07, P07010 (2020) | arXiv:1910.01430 [physics.ins-det]

22. Measurement of the cross sections for inclusive electron scattering in the E12-14-012 experiment at Jefferson Lab
M. Murphy et al. [Jefferson Lab Hall A Collaboration]
Phys. Rev. C100 no.5, 054606 (2019) | arXiv:1908.01802 [hep-ex]

21. Calibration of the charge and energy response of the MicroBooNE liquid argon time projection chamber using muons and protons
C. Adams et al. [MicroBooNE Collaboration]
JINST 15 no.03, P03020 (2020) | arXiv:1907.11736 [physics.ins-det]

20. First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at 𝐸𝜈 ∼ 0.8 GeV with the MicroBooNE Detector
C. Adams et al. [MicroBooNE Collaboration]
Phys. Rev. Lett. 123 no.13, 131801 (2019) | arXiv:1905.09694 [hep-ex]

19. Comparing proton momentum distributions in 𝐴=3 nuclei via 3He and 3H(𝑒,𝑒′𝑝) measurements
R. Cruz-Torres et al. [Jefferson Lab Hall A Tritium Collaboration]
Phys. Lett. B797, 134890 (2019)arXiv:1902.06358 [nucl-ex]

18. Electron versus muon neutrino induced cross sections in charged current quasi-elastic processes
A. Nikolakopoulos, N. Jachowicz, N. Van Dessel, K. Niewczas, R. González-Jiménez, J. Manuel Udías, V. Pandey
Phys. Rev. Lett. 123 no.5, 052501 (2019) | arXiv:1901.08050 [nucl-th]

17. Design and construction of the MicroBooNE Cosmic Ray Tagger system
C. Adams et al. [MicroBooNE Collaboration]
JINST 14 no.04, P04004 (2019) | arXiv:1901.02862 [physics.ins-det]

16. Rejecting cosmic background for exclusive neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector
C. Adams et al. [MicroBooNE Collaboration]
Eur. Phys. J. C79 no.8, 673 (2019) | arXiv:1812.05679 [physics.ins-det]

15. Density Changes in Low Pressure Gas Targets for Electron Scattering Experiments
S. N. Santiesteban et al.
Nucl. Instrum. Meth. A940, 351 (2019) | arXiv:1811.12167 [physics.ins-det]

14. First measurement of 𝜈𝜇 charged-current π0 production on argon with the MicroBooNE detector
C. Adams et al. [MicroBooNE Collaboration]
Phys. Rev. D99 no.9, 091102 (2019) | arXiv:1811.02700 [hep-ex]

13. First measurement of the Ar(𝑒,𝑒′)𝑋 cross section at Jefferson Laboratory
H. Dai, M. Murphy, V. Pandey et al. [Jefferson Lab Hall A Collaboration]
Phys. Rev. C99 no.5, 054608 (2019) | arXiv:1810.10575 [nucl-ex]

12. Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber
C. Adams et al. [MicroBooNE Collaboration]
Phys. Rev. D99 no.9, 092001 (2019) | arXiv:1808.07269 [hep-ex]

11. Comparison of 𝜈𝜇-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions
C. Adams et al. [MicroBooNE Collaboration]
Eur. Phys. J. C79 no.3, 248 (2019) | arXiv:1805.06887 [hep-ex]

10. Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE
C. Adams et al. [MicroBooNE Collaboration]
JINST 13 no.07, P07007 (2018) | arXiv:1804.02583 [physics.ins-det]

9. First Measurement of the Ti(𝑒,𝑒′)X Cross Section at Jefferson Lab
H. Dai, M. Murphy, V. Pandey et al. [Jefferson Lab Hall A Collaboration]
Phys. Rev. C98 no.1, 014617 (2018) | arXiv:1803.01910 [nucl-ex]

8. Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
C. Adams et al. [MicroBooNE Collaboration]
JINST 13 no.07, P07006 (2018) | arXiv:1802.08709 [physics.ins-det]

7. A-dependence of quasielastic charged-current neutrino-nucleus cross sections
N. Van Dessel, N. Jachowicz, R. González-Jiménez, V. Pandey, T. Van Cuyck
Phys. Rev. C97 no.4, 044616 (2018) | arXiv:1704.07817 [nucl-th]

6. Electroweak single-pion production off the nucleon: from threshold to high invariant masses
R. González-Jiménez, N. Jachowicz, K. Niewczas, J. Nys, V. Pandey, T. Van Cuyck, N. Van Dessel
Phys. Rev. D95 no.11, 113007 (2017) | arXiv:1612.05511 [nucl-th]

5. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics
V. Pandey, N. Jachowicz, M. Martini, R. González-Jiménez, J. Ryckebusch, T. Van Cuyck, N. Van Dessel
Phys.Rev. C94 no.5, 054609 (2016) | arXiv:1607.01216 [nucl-th]

4. Influence of short-range correlations in neutrino-nucleus scattering
T. Van Cuyck, N. Jachowicz, R. González-Jiménez, M. Martini, V. Pandey, J. Ryckebusch, N. Van Dessel
Phys. Rev. C94 no.2, 024611 (2016) | arXiv:1606.00273 [nucl-th]

3. Electron-neutrino scattering off nuclei from two different theoretical perspectives
M. Martini, N. Jachowicz, M. Ericson, V. Pandey, T. Van Cuyck, N. Van Dessel
Phys. Rev. C94 no.1, 015501 (2016) | arXiv:1602.00230 [nucl-th]

2. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation
V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini
Phys. Rev. C92, 024606 (2015) | arXiv:1412.4624 [nucl-th]

1. Quasielastic contribution to antineutrino-nucleus scattering
V. Pandey, N. Jachowicz, J. Ryckebusch, T. Van Cuyck, W. Cosyn
Phys. Rev. C89, 024601 (2014) | arXiv:1310.6885 [nucl-th]

Conference Proceedings

13. “Summary of Workshop on Common Neutrino Event Generator Tools
J. Barrow et al.
2008.06566 [hep-ex]

12. “Non-trivial differences between charged current $\nu_e$ and $\nu_{\mu}$​ induced interactions with nuclei
A. Nikolakopoulos, N. Jachowicz,  R. González-Jiménez,  J. Manuel Udías, K. Niewczas, V. Pandey
PoS NuFact2019, 048 (2020)

11. “Electron-argon scattering studies at Jefferson Lab
V. Pandey, H. Dai, M. Murphy, D. Abrams
PoS NuFact2018, 017 (2019)

10. “Modeling neutrino-nucleus interactions in the few-GeV region
K. Niewczas, N. Jachowicz, A. Nikolakopoulos, J. Nys, R. González-Jiménez, V. Pandey, N. Van Dessel
PoS NuFact2018, 031 (2019)

9. “Future Opportunities in Accelerator-based Neutrino Physics
Andrea Dell’Acqua et al.
arXiv:1812.06739 [hep-ex]

8. “Modeling neutrino-nucleus interaction at intermediate energies
R. González-Jiménez, N. Jachowicz, A. Nikolakopoulos, J. Nys, K. Niewczas, V. Pandey, T. Van Cuyck, N. Van Dessel
PoS NuFact2017, 072 (2017)

7. Probing electron-argon scattering for liquid-argon based neutrino-oscillation program
V. Pandey, D. Abrams, S. Alsalmi, A.M. Ankowski, J. Bane, O. Benhar, H. Dai, D.B. Day, D.W. Higinbotham, C. Mariani, M. Murphy, D. Nguyen
Bled Workshops in Physics, Vol. 18, No. 3 (2018) | arXiv:1711.01671 [nucl-ex]

6. CRPA Calculations for Neutrino-Nucleus Scattering: From Very Low Energies to the Quasielastic Peak
N. Jachowicz, V. Pandey, M. Martini, R. González-Jiménez, T. Van Cuyck, N. Van Dessel
JPS Conf. Proc. 12 010018 (2016)  

5. Quasielastic Neutrino–Argon Cross Sections in a CRPA Approach
N. Van Dessel, N. Jachowicz, R. González-Jiménez, V. Pandey, T. Van Cuyck
Acta Phys. Polon. Supp. 9, 811-812 (2016)  

4. Correlations in neutrino-nucleus scattering
T. Van Cuyck, V. Pandey, N. Jachowicz, R. González-Jiménez, M. Martini, J. Ryckebusch, N. Van Dessel
SLAC-econf-C1508102 (2016) | arXiv:1606.08636 [nucl-th]

3. Neutrino-Induced 1-𝜋 Production
R. González-Jiménez, T. Van Cuyck, N. Van Dessel, V. Pandey, N. Jachowicz
JPS Conf. Proc. 12, 010047 (2016) | arXiv:1602.05096 [nucl-th]

2. Quasielastic electron- and neutrino-nucleus scattering in a continuum random phase approximation approach
V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini
PoS NUFACT2014, 055 (2015) | arXiv:1501.04018 [nucl-th]

1.  Low-energy neutrino-nucleus interactions and beta-beam neutrino
N. Jachowicz, V. Pandey
AIP Conf. Proc. 1663 no.1, 050003 (2015)

Physics Magazine Article

1. Modeling neutrino-nucleus interactions for accelerator-based neutrino-oscillations experiments”
V. Pandey, N. Jachowicz
Featured article, BPhy – Belgian Physical Society Magazine – 02/2015

Academic Theses

PhD Thesis: “Modeling electroweak quasielastic scattering off nuclei in kinematics relevant for accelerator-based neutrino-oscillation experiments
March 2016, Ghent University, Ghent, Belgium

Master’s Thesis: “Neutrino masses in large volume compactifications in string theory framework
May 2010, Indian Institute of Technology Roorkee, Roorkee, India

Summer Research Thesis: “A theoretical study of stimulated Raman scattering in one dimensional Mott-Hubbard systems
July 2009, Raja Ramanna Centre for Advanced Technology, Indore, India

search previous next tag category expand menu location phone mail time cart zoom edit close